Lineare Gleichungssysteme Unendlich Viele Lösungen Kursbuch

Lesezeit: 4 min Lineare Gleichungssysteme können verschiedene Lösungen haben, im Folgenden eine kurze Übersicht. Genau eine Lösung Für x und für x erhalten wir jeweils einen konkreten Wert. Das lineare Gleichungssystem hat ein eindeutiges Lösungspaar. Allgemein: L = { (x|y)} Beispiel: L = { (15|25)} Betrachtung als Funktion: Die beiden Graphen haben einen gemeinsamen Schnittpunkt. Keine Lösung Das lineare Gleichungssystem hat keine Lösung. Für x und y erhalten wir beim rechnerischen Lösen keinen konkreten Wert, sondern eine falsche Aussage wie zum Beispiel: 3 = 4 L = {} Es steht kein Wertepaar innerhalb der Klammer, die Klammer ist leer. Das bedeutet: Leere Lösungsmenge. Es gibt keine Lösung. Betrachtung als Funktion: Die beiden Graphen sind parallel zueinander und haben keinen gemeinsamen Schnittpunkt. Unendlich viele Lösungen Das Lineare Gleichungssystem hat unendlich viele Lösungen. Wir setzen also bei beiden Gleichungen einen beliebigen Wert für x ein und erhalten dann stets bei beiden Gleichungen den selben Wert für y.

Lineare Gleichungssysteme Unendlich Viele Lösungen Online

Manchmal machen lineare Gleichungssysteme, auch wenn es nur zwei Gleichungen mit zwei Unbekannten sind, richtig "Ärger", denn es gibt nicht einfach nur eine, sondern gleich unendlich viele Lösungen. Aber warum ist das so? Problem gelöst? Zwei Gleichungen und viele Lösungen - ein Problem Vielleicht ist Ihnen das schon passiert: Sie wollen ein lineares Gleichungssystem mit nur 2 Gleichungen und zwei Unbekannten (meist x und y) lösen, aber es passiert beim Rechnen etwas "Komisches", denn die beiden Gleichungen sind nach einigen Umformungen identisch. Dieser Fall tritt beispielsweise beim System 2x - 3y = 8 sowie 6y = 4x - 16 ein. Löst man hier beide Gleichungen nach x (oder y) auf, um diese nach dem Gleichsetzungsverfahren zu lösen, entpuppen sie sich als identisch. In all solchen Fällen gibt es für das lineare Gleichungssystem tatsächlich mehrere, sogar unendlich viele Lösungen. Im Beispielfall können Sie für die Unbekannte x alle reellen Zahlen einsetzen und y nach einer der beiden Gleichungen berechnen.

Lineare Gleichungssysteme Unendlich Viele Lösungen Bayern

Lösung: Die Namen der Variablen sind uninteressant. Der GTR benötigt nur die vorkommenden Zahlen. In Matrixschreibweise: Geben Sie diese Matrix mit MATRIX EDIT in den GTR ein. Wählen Sie dann in MATRIX MATH den Befehl rref aus und lassen Sie die Matrix umformen. Interpretieren Sie die Ergebnismatrix wieder als lineares Gleichungssystem. Das LGS hat unendlich viele Lösungen. Wählen Sie eine der Variablen als Parameter aus. In diesem Fall bietet sich x 3 =t an. Die untere Zeile bedeutet 0=0. Dies ist lediglich eine wahre Aussage und ist für die Lösungsmenge nicht weiter von Bedeutung. Das LGS besteht im wesentlichen aus den Gleichungen: Für jede beliebige reelle Zahl ergibt sich also ein Lösungstripel des LGS.

Lineare Gleichungssysteme Unendlich Viele Lösungen Arbeitsbuch

Beim rechnerischen Lösen der Gleichungen treffen wir auf eine sogenannte Identität, zum Beispiel: 2 = 2. Für die Lösungsmenge (die Menge aller möglichen Lösungen) schreibt man: Allgemein: L = { (x|y) | Gleichung} Beispiel: L = { (x|y) | y = x + 10} Sprich: "Zur Lösungsmenge gehören alle x und y, die die Gleichung y = x + 10 erfüllen. " Das heißt, alle x und y gehören zur Lösung, wenn man sie in die Gleichung y = x + 10 einsetzen kann. Und das klappt hier mit allen Zahlen. Betrachtung als Funktion: Die beiden Graphen liegen aufeinander und haben dadurch unendlich viele gemeinsame Schnittpunkte. Und richtig, die Zusammenhänge mit den Funktionen bzw. Schnittpunkten haben wir bereits beim Schnittpunkt von zwei Geraden behandelt. Die linearen Gleichungssysteme sind eine entsprechende Anwendung dieses Wissens. Hinweis: LGS lassen sich auch über andere Wege lösen, so zum Beispiel mithilfe der Cramerschen Regel oder dem Gauß-Verfahren. Für die Einführung ins Thema sind diese Verfahren jedoch nicht so gut geeignet und werden daher erst später vorgestellt.

Lineare Gleichungssysteme Unendlich Viele Lösungen In Holz

In diesem Fall sind x 2 und x 3 Basisvariablen und x 1 die Nicht-Basisvariable. Es htten aber auch a 11 und a 23 als Pivotelemente gewhlt werden knnen, sodass x 1 und x 3 Basisvariablen sein knnten. Es gibt also nicht nur eine Basislsung, sondern im Allgemeinen viele verschiedene. Jede Auswahl von m linear unabhngigen Spalten ist mglich. ber die Einschrnkung von linear unabhngigen Spalten braucht man sich bei Anwendung des Gau-Algorithmus allerdings keine Gedanken machen, da dieser automatisch sicherstellt, dass diese Bedingung nicht verletzt wird. Basistausch Es knnte von Interesse sein, verschiedene Basislsungen zu ermitteln. Durch einen einfachen Basistauschs wird eine Basisvariable zu einer Nicht-Basisvariable und eine bisherige Nicht-Basisvariable zu einer Basisvariablen. Natrlich ist es mglich, fr die Ermittlung das LGS von neuem mit unterschiedlichen Pivotelementen zu rechnen. Der Basistausch ist im Allgemeinen aber weniger rechenaufwndig. Das Vorgehen fr einen einfachen Basistausch ist wie folgt: Whle die Spalte der Nicht-Basisvariable die zur Basisvariablen werden soll als Pivotzeile.

Lineare Gleichungssysteme Unendlich Viele Lösungen Und Fundorte Für

Zwar ist die Diagonalform in den ersten beiden Spalten hergestellt, aber die x3 Spalte ist kein Einheitsvektor. Das Endtableau in Gleichungsschreibweise zurck bersetzt: x 1 +5∙x 3 =18 x 2 -3∙x 3 = -6 Um eine konkrete der unendlich vielen Lsungen zu erhalten, kann ein beliebiger Wert fr x 3 gewhlt werden: Wahl x 3 =10 x 1 +5∙10=18 ⇔ x 1 =-32 x 2 -3∙10=-6 ⇔ x 2 =24 Wurde der Wert von x 3 gewhlt, sind auch die anderen Variablen festgelegt. Prinzip: In einem widerspruchsfreien LGS mit bereits gestrichenen Nullzeilen knnen n-m Variablen -in Worten: so viele Variablen wie es mehr Spalten als Zeilen gibt- frei gewhlt werden, die restlichen ergeben sich dann. Frei gewhlt werden knnen die Variablen, die in Spalten stehen, die nach Anwendung des Gau-Algorithmus nicht markiert sind. Ganz einfach ist es, wenn fr die frei whlbaren Variablen der Wert null gewhlt wird. Die Werte der brigen Variablen sind dann einfach abzulesen: Wahl x 3 =0 x 1 +5∙0=18 ⇔ x 1 =18 x 2 -3∙0=-6 Nochmals ein Blick auf das Endtableau: Die markierten Spalten enthalten einen Einheitsvektor, die zu den jeweiligen Spalten gehrenden Variablen werden Basisvariablen genannt.

Und ebenso hat er drei Tonnen Spinat pro Acker geerntet. Er hat S Acker. Auf jedem dieser Acker hat er drei Tonnen Spinat geerntet, das ergibt 3S Tonnen Spinat. Und die gesamte Menge ist gegeben. Die gesamte Menge beträgt 31 Tonnen Gemüse. Das hier ist also 31. Und nun haben wir ein System mit 2 Gleichungen, Und nun haben wir ein System mit 2 Gleichungen, und 2 Unbekannten, dass wir lösen können um die Variablen B und S zu bestimmen. Wir haben 6B + 9S = 93. Lass uns durch die zweite Gleichung das B eliminieren. Dazu multiplizieren wir die zweite Gleichung mit -3. Erst die linke Seite. Dann die rechte Seite. Was erhalte ich dann? -3 * 2B = -6B. So kann man beide Gleichungen addieren, und das B fällt weg. -3 * 3S = -9S. -3 * 31= -93. Was erhalten wir, wenn wir nun die zweiten Seiten dieser Gleichungen addieren? Was erhalten wir, wenn wir nun die zweiten Seiten dieser Gleichungen addieren? 6B - 6B = 0. 9S - 9S = 0. Auf der rechten Seite haben wir 93 - 93. Das ist wieder 0. Wir erhalten also: 0 = 0 Das ist wahr egal für welches X und Y.