Folgen Und Reihen Aufgaben Mit Lösungsweg

Zusammenfassung Übersicht 8. 1 Grenzwerte von Folgen durch Ausklammern 8. 2 Grenzwerte von Folgen mit den Grenzwertsätzen 8. 3 Rekursive Folge 8. 4 Grenzwert von Reihen 8. 5 Konvergenz von Reihen 8. 6 Anwendung des Majoranten- und Minorantenkriteriums 8. 7 Konvergenzradius und Konvergenzintervall von Potenzreihen 8. Aufgaben zu Folgen mit Lösungen. 8 Konvergenzbereich einer Potenzreihe 8. 9 Das große O von Landau für Folgen 8. 10 Limes inferior und Limes superior ⋆ 8. 11 Koch'sche Schneeflocke ⋆ 8. 12 Checkliste: Grenzwerte von Folgen und praktisches Rechnen mit der Unendlichkeit 8. 13 Checkliste: Unendliche Reihen Preview Unable to display preview. Download preview PDF. Author information Affiliations HAW Würzburg-Schweinfurt, Fakultät Angewandte Natur- und Geisteswissenschaften, Würzburg, Deutschland Andreas Keller Corresponding author Correspondence to Andreas Keller. Copyright information © 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature About this chapter Cite this chapter Keller, A. (2021). Folgen und Reihen.

Folgen Und Reihen Aufgaben Mit Lösungsweg 10

Alternative Lösung: Mit Majorantenkriterium. Mit und gilt Daher gibt es ein mit für alle Da konvergiert, konvergiert auch. Nach dem Majorantenkriterium konvergiert auch (absolut). Folgen und reihen aufgaben mit lösungsweg 10. Trivialkriterium: Verschärfung [ Bearbeiten] Aufgabe (Verschärfung des Trivialkriteriums) Sei eine monoton fallende Folge und konvergent, so ist eine Nullfolge. Lösung (Verschärfung des Trivialkriteriums) Beweisschritt: ist eine Nullfolge Da die Reihe konvergiert, gibt es nach dem Cauchy-Kriterium zu jedem ein, so dass für alle gilt Damit gilt für alle: Also ist und damit auch eine Nullfolge. Da die Folgen und Nullfolgen sind, ist schließlich auch eine Nullfolge. Cauchy Kriterium: Anwendungsbeispiel [ Bearbeiten] Aufgabe (Alternierende harmonische Reihe) Zeige mit Hilfe des Cauchy-Kriteriums, dass die altenierende harmonische Reihe konvergiert. Lösung (Alternierende harmonische Reihe) Da eine Nullfolge ist, gibt es zu jedem ein, so dass für alle. Wurzel- und Quotientenkriterium: Fehlerabschätzungen und Folgerungen [ Bearbeiten] Aufgabe (Fehlerabschätzung für das Wurzelkriterium) Sei eine Folge und.

Folgen Und Reihen Aufgaben Mit Lösungsweg 3

Weiter gelte für alle. Dann gilt für die Summe des nach dem Wurzelkriterium absolut konvergenten Reihe für alle die Fehlerabschätzung Lösung (Fehlerabschätzung für das Wurzelkriterium) Nach Voraussetzung gilt für alle: Daraus folgt für alle: Aufgabe (Fehlerabschätzung für das Quotientenkriterium) Sei eine Folge und. Weiter gelte und für alle. Dann gilt für die Summe des nach dem Quotientenkriterium absolut konvergenten Reihe für alle die Fehlerabschätzung Lösung (Fehlerabschätzung für das Quotientenkriterium) Damit ergibt sich Aufgabe (Kriterium für Nullfolgen) Sei eine Folge und. Folgen und reihen aufgaben mit lösungsweg youtube. Weiter gelte und oder. Dann gilt folgt. Zeige für und. Leibniz Kiterium: Anwendungsaufgabe mit Fehlerabschätzung [ Bearbeiten] Aufgabe (Leibniz-Kriterium mit Fehlerabschätzung) Zeige, dass die Reihe konvergiert. Bestimme anschließend einen Index, ab dem sich die Partialsummen der Reihe vom Grenzwert um weniger als unterscheiden. Lösung (Leibniz-Kriterium mit Fehlerabschätzung) Beweisschritt: Die Reihe konvergiert Für gilt Also ist monoton fallend.

Folgen Und Reihen Aufgaben Mit Lösungsweg 2

Die Reihe konvergiert nicht absolut nach dem Minorantenkriterium:, da monoton steigend ist. Also divergiert die Reihe. Aufgabe (Anwendung der Konvergenzkriterien 2) Untersuche die folgenden Reihen auf Konvergenz. Lösung (Anwendung der Konvergenzkriterien 2) 1. Majorantenkriterium: Es gilt 2. Minorantenkriterium: Es gilt, da ist divergiert 3. Quotientenkriterium: Für gilt Alternativ mit Wurzelkriterium: 4. Trivialkriterium: Für gilt Also ist keine Nullfolge. Damit divergiert die Reihe. 5. Leibnizkriterium: Es gilt, da monoton fallend ist. Folgen und reihen aufgaben mit lösungsweg meaning. Also ist auch monoton fallend., da stetig ist. Also ist eine Nullfolge. 6. Majorantenkriterium: Für gilt, da ist. (Geometrische Reihe) 7. Majorantenkriterium: Es gilt Anmerkung: Das Leibniz-Kriterium ist hier nicht anwendbar, da nicht monoton fallend ist! Aufgabe (Reihen mit Parametern) Bestimme alle, für welche die folgenden Reihen (absolut) konvergieren: Lösung (Reihen mit Parametern) Teilaufgabe 1: Für alle gilt Daher konvergiert die Reihe für alle absolut.

Folgen Und Reihen Aufgaben Mit Lösungsweg Meaning

Aufgabenblatt 1 --- Aussagenlogik Dateien: Aufgabenblatt (PDF) (354kB) Lösung (PDF) (388kB) Aufgabenblatt 2 --- Prädikatenlogik (283kB) (303kB) Aufgabenblatt 3 --- Prädikatenlogik, natürliche Zahlen und Registermaschinen (2260kB) zum Download per Modem (185kB) (199kB) Das Registermaschinenprogramm sowie Beispielprogramme für den Teilbarkeitsalgorithmus aus Aufgabe 18 gibt es in der Rubrik "Links und weitere Hilfen".

Folgen Und Reihen Aufgaben Mit Lösungsweg Youtube

Umfang: Arbeitsblätter Lösungsblätter Schwierigkeitsgrad: schwer - sehr schwer Autor: Robert Kohout Erstellt am: 18. 06. 2019

Teilaufgabe 2: Wir unterscheiden zwei Fälle: Fall 1: Hier ist und Daher konvergiert die Reihe nach dem Majorantenkriterium absolut. Fall 2:, da Also divergiert die Reihe nach dem Wurzelkriterium. Teilaufgabe 3: Wir unterscheiden zwei Fälle: Daher konvergiert die Reihe nach dem Quotientenkriterium absolut. Fall 2:. Daher ist keine Nullfolge Also divergiert die Reihe nach dem Trivialkriterium. Teilaufgabe 4: Wir unterscheiden vier Fälle: Hier ist und (geometrische Reihe) Fall 2: divergiert (harmonische Reihe) Fall 3: konvergiert nach dem Leibniz-Kriterium (alternierende harmonische Reihe) Die Reihe konvergiert nicht absolut, da divergiert Fall 4: Hier ist, und divergiert. Folgen und Reihen: Beispiel aus dem Bankwesen. (harmonische Reihe) Also divergiert die Reihe nach dem Minorantenkriterium. Anmerkung: Die Fälle und können auch mit dem Wurzel- oder Quotientenkriterium behandelt werden. Aufgabe (Grenzwertkriterium oder Majorantenkriterium) Untersuche die Reihe auf Konvergenz. Lösung (Grenzwertkriterium oder Majorantenkriterium) Es gilt Daher gilt mit: Da die Reihe konvergiert, konvergiert nach dem Grenzwertkriterium auch.