Übungsaufgaben Exponentielles Wachstum

Exponentielles Wachstum und Periodizität haben eine Gemeinsamkeit. Ihre zugehörigen Funktionen sehen auf den ersten Blick immer sehr kompliziert aus. Dazu gehören Exponentialfunktionen, wie zum Beispiel \(y=2^{x}\), und trigonometrische Funktionen, wie beispielsweise \(y=\cos(x)\). Vielleicht hast du auf den ersten Blick nicht sofort eine Idee, wie du mit diesen Funktionen umgehen sollst. Du musst dir aber keine Sorgen machen! Wenn du dich erst mal ein wenig mit ihnen beschäftigt hast, wirst du merken, dass es gar nicht so schwer ist. Denn wie für jede Art von Funktionen gibt es auch hier Regeln, mit denen du jede Rechnung bewältigen kannst. Arbeite dich durch die folgenden Lernwege durch und rechne die Aufgaben zum exponentiellen Wachstum und zur Periodizität. Fühlst du dich sicher im Umgang mit den jeweiligen Funktionen, kannst du dein Wissen in den Klassenarbeiten testen. Exponentielles Wachstum und Periodizität | Aufgaben und Übungen | Learnattack. Hast du diese bewältigt, sollten dir auch kompliziert aussehende Funktionen keine Angst mehr machen. Exponentielles Wachstum und Periodizität – Klassenarbeiten

  1. Exponentielles Wachstum/Exponentialfunktion - Mathematikaufgaben und Übungen | Mathegym
  2. Exponentielles Wachstum und Periodizität | Aufgaben und Übungen | Learnattack
  3. Exponentialfunktionen - Mathematikaufgaben und Übungen | Mathegym
  4. Exponentielles Wachstum (Aufgaben) | Mathelounge

Exponentielles Wachstum/Exponentialfunktion - Mathematikaufgaben Und Übungen | Mathegym

Nach 8 Jahren beträgt das Kapital auf dem Konto: Funktionen mit der Gleichung f(x) = b · a x heißen Exponentialfunktionen. Dabei ist a > 0 der Wachstumsfaktor und b = f(0) der Anfangsbestand Schreibe in der Form f(x) = Gegeben ist der Graph einer Exponentialfunktion mit der Gleichung y Sei B(n) der Bestand nach dem n-ten Zeitschritt. Unterscheide zwischen linearem und exponentiellem Wachstum: Linear: Zunahme pro Zeitschritt ist - absolut - immer gleich, d. B(n + 1) = B(n) + d B(n) = B(0) + n ·d d bezeichnet hier die Änderung pro Zeitschritt. Exponentielles Wachstum/Exponentialfunktion - Mathematikaufgaben und Übungen | Mathegym. Exponentiell: Zunahme pro Zeitschritt ist - prozentual - immer gleich, d. B(n + 1) = B(n) · k. B(n) = B(0) ·k n k bezeichnet hier den Wachstumsfaktor. Ein Bestand mit dem Anfangswert B(0) = 1000 nimmt täglich um 2, 5% zu. Ein Bestand mit dem Anfangswert B(0) = 1000 nimmt täglich um 25 zu. Für welche Werte von a (a) fällt der Graph von f(x) = (b) steigt der Graph von f(x) = Ist f(x)=b·a x, so gilt für b>0 und a>1, dass der zugehörige Graph die y-Achse im positiven Bereich schneidet und ansteigt (umso steiler, je größer a).

Exponentielles Wachstum Und Periodizität | Aufgaben Und Übungen | Learnattack

aber was mache ich jetzt mit q n? ist das dann auch 1? boah das ist soo kompliziert..... ich hatte die e-Funktion noch nie.. ich hasse es:( Danke für das Lob. Freut mich:). Dass ich lustig bist Du allerdings der erste, der mir das sagt. Exponentielles Wachstum (Aufgaben) | Mathelounge. Mir wird normal jeglicher Humor abgesprochen:P. Du sagst "n=0" machst aber n = 0 tust Du nicht einsetzen. Ich mache mal das zweite vor. Du machst dann bis morgen das erste (ich bin auch gleich im Bett), das ist einfacher. Haben: G n = G 0 ·q n Gesucht: q und G 0 Einsetzen von n = 0 100 = G 0 ·q 0 = G 0 Nun einsetzen von n = 1: 50 = G 0 ·q^1 Wir wissen bereits G 0 = 100 -> Einsetzen: 50 = 100*q^1 |:100 50/100 = q q = 1/2 Folglich: G n = G 0 ·q n G n = 100·(1/2)^n

Exponentialfunktionen - Mathematikaufgaben Und Übungen | Mathegym

Hilfe speziell zu dieser Aufgabe Wie groß ist der Bestand zum Zeitpunkt t=2 min? Nach wie vielen Minuten halbiert sich dieser Bestand? Allgemeine Hilfe zu diesem Level Verdoppelungszeit t D nennt man die (bei exponentiellem Wachstum konstante) Zeit, in der sich der Bestand verdoppelt. Halbwertszeit t H nennt man die (bei exponentieller Abnahme konstante) Zeit, in der sich der Bestand halbiert. Tastatur Tastatur für Sonderzeichen Kein Textfeld ausgewählt! Bitte in das Textfeld klicken, in das die Zeichen eingegeben werden sollen. Funktionen mit der Gleichung f(x) = b · a x heißen Exponentialfunktionen. Dabei ist a > 0 der Wachstumsfaktor und b = f(0) der Anfangsbestand Gegeben ist der Graph einer Exponentialfunktion mit der Gleichung y = Schreibe in der Form f(x) Der Graph einer Exponentialfunktion mit der Gleichung y = b · a x hat stets die x-Achse als Asymptote und schneidet die y-Achse in (0|b). Im Fall b > 0 steigt der Graph für a > 1 ("ins Unendliche") fällt der Graph für 0 < a < 1 Im Fall b < 0 (Spiegelung an der x-Achse gegenüber dem positiven Betrag von b) verhält es sich genau umgekehrt.

Exponentielles Wachstum (Aufgaben) | Mathelounge

Nach 8 Jahren beträgt das Kapital auf dem Konto: Ein Guthaben von 5000 € wird mit 3, 7% verzinst. Nach wie vielen Jahren ist es auf 8000 € angewachsen? Nach? Jahren beträgt das Guthaben 8000 €.

Für welche Werte von a (a) fällt der Graph von f(x) = (b) steigt der Graph von f(x) = Sei B(n) der Bestand nach dem n-ten Zeitschritt. Unterscheide zwischen linearem und exponentiellem Wachstum: Linear: Zunahme pro Zeitschritt ist - absolut - immer gleich, d. h. B(n + 1) = B(n) + d Den Bestand nach n Zeitschritten berechnet man mithilfe der Formel: B(n) = B(0) + n ·d d bezeichnet hier die Änderung pro Zeitschritt. Exponentiell: Zunahme pro Zeitschritt ist - prozentual - immer gleich, d. B(n + 1) = B(n) · k. B(n) = B(0) ·k n k bezeichnet hier den Wachstumsfaktor. Ein Bestand mit dem Anfangswert B(0) = 1000 nimmt täglich um 2, 5% zu. Ein Bestand mit dem Anfangswert B(0) = 1000 nimmt täglich um 25 zu. Exponentielles Wachstum: Zunahme pro Zeitschritt ist - prozentual - immer gleich, d. B(n + 1) = B(n) · k. B(n) gesucht: B(n) = B(0) · k n n gesucht: Ist n gesucht, löst man die Formel nach n auf: B(n) = B(0) · k n |: B(0) B(n) / B(0) = k n | log log( B(n) / B(0)) = log( k n) log( B(n) / B(0)) = n · log( k) |: log( k) n = log( B(n) / B(0)) / log( k) B(0) gesucht: Ist B(0) gesucht, löst man die Formel nach B(0) auf: B(n) = B(0) · k n |: k n B(0) = B(n) / k n k gesucht: Ist k gesucht, löst man die Formel nach k auf: B(n) / B(0) = k n Zuletzt zieht man noch die n-te Wurzel Ein Kapital von 2000 € vermehrt sich auf einem Sparkonto pro Jahr um 0, 1%.