Komplexe Quadratische Gleichung Rechner

Frage anzeigen - Wurzelgleichungen +73 Wie gehe ich bei dieser Gleichung am besten vor? x -Wurzel aus x+6 =0 |+wurzel aus x x=Wurzel aus x+6 | hoch 2 nehmen x 2= x+6 Wie geht es dann weiter? #1 +3554 Dein erster Schritt stimmt zwar, aber schon Zeile 2 ist nicht mehr ganz so gut. Ich korrigier's mal: \(x - \sqrt x + 6 = 0 \ \ \ \ | +\sqrt x \\ x+6 = \sqrt x \ \ \ \ |^2 \\ (x+6)^2 = x \\ x^2+12x+36 = x \ \ \ \ |-x \\ x^2-11x+36 = 0\) Von hier aus kommst du bestimmt selbst weiter;) Kleiner Spoiler: Hier gibt's keine Lösung. #2 +73 Danke! Komplexe Zahlen | SpringerLink. Ich weiß leider nicht, wie man hier das Wurzelzeichen einfügt aber das +6 ist in der Wurzel drin. Ich markiere den Inhalt der Wurzel mal fett x - Wurzel aus x+6 =0 Wie würde das Ganze dann aussehen Bei deiner Lösung würde ich eine quadratische Ergänzung machen, damit wir auf eine binomische Formel umformen können #3 +13500 Ich weiß leider nicht, wie man hier das Wurzelzeichen einfügt... Hallo mathenoob! Ein Formeleditor zu LaTeX, als kleine Hilfe zum Schreiben von Zeichen in der Mathematik: Grüße!

  1. Quadratische Gleichungen mit komplexen Zahlen lösen | Mathelounge
  2. Komplexe Zahlen | SpringerLink

Quadratische Gleichungen Mit Komplexen Zahlen Lösen | Mathelounge

Habe ich die Gleichung so richtig gelöst? 18. 02. 2022, 22:21 (Bild ergänzt) Ich komme auf das gleiche Ergebnis. Ist kein Fehler, aber in der dritten Zeile steht 1^2+1^2. Ist ein bisschen irreführend finde ich. Es ist ja eigentlich 1^2-i^2. Und das ist zwar auch 1+1, aber eben nicht 1^2+1^2, wenn du verstehst. Quadratische Gleichungen mit komplexen Zahlen lösen | Mathelounge. F7URRY Fragesteller 18. 2022, 22:32 Ist die Allgmeine Regel dafür nicht: (a+bi)(a-bi) = a^2 + b^2 also eine Komplexe zahl mit ihrer Konjungierten Form multiplizieren ergibt, also ihr Betrag hoch 2? @F7URRY Ah ok. Ich habe schlicht die 3. binomische Formel benutzt und dann steht da halt i*i. Aber es stimmt (a+bi)(a-bi) = a^2 + b^2 auch. In dem Fall ziehe ich meinen Einwand zurück. 0 Vergleich der Ergebnisse LG H.

Frage anzeigen - Quadratische Ergänzungen +73 Hallo, bin gerade bei quadratischen Ergänzungen. Die Aufgabe ist folgende: x 2 -10x+9=0 Da soll man ja jetzt etwas addieren, damit links dann eine der ersten beiden binomischen Formeln steht. In dem Fall die zweite, weil -10x angegeben ist. Bedeutet, man addiert 16 auf beiden Seiten, wodurch die Gleichung dann folgendermaßen aussehen würde x 2 -10x+25=16 das kann man dann auf die Schreibweise der binomischen Formel vereinfachen (nennt man das vereinfachen? ) (x-5) 2 =16 da zieht man dann die Wurzel von. Und da kommen bei mir dann ein paar Fragen auf. Rechts kommt auf jeden Fall 4 raus, aber wird beim Wurzel ziehen einfach nur ein x-5 aus dem ursprünglichen Term links? Und wie geht es dann weiter? x-5=4 da dann +5 und als ergebnis x=9 #1 +3554 Das passt schon ungefähr, eine Kleinigkeit am Ende gibt's zu korrigieren. Erstmal: Den Schritt, in dem du die binomische Formel benutzt, kannst du schon "vereinfachen" nennen, ich persönlich find' "umformen" aber besser.

Frage anzeigen - komplexe Gleichung lösen Wie löse ich diese komplexe Gleichung? z^3=-64i #1 +3554 Generell ist für derartige Gleichungen die Polardarstellung zu empfehlen: Es gilt \(-64i = 64 \cdot (-i) = 64 \cdot e^{i\frac{3\pi}{2}}\). Damit folgt: \(z^3 = -64i \\ z^3 = 64 \cdot e^{i\frac{3\pi}{2}} \ \ | ^3\sqrt. \\ z = \ ^3\sqrt{64 \cdot e^{i\frac{3\pi}{2}}} \\ z = (64 \cdot e^{i\frac{3\pi}{2}})^\frac{1}{3} \\ z = 64^\frac{1}{3} \cdot (e^{i\frac{3\pi}{2}})^\frac{1}{3} \\ z = 4 \cdot e^{i\frac{3\pi}{2}\frac{1}{3}} \\ z = 4 \cdot e^{i\frac{\pi}{2}} = 4i\) #2 z^3 hat aber 3 Lö die Polardarstellung bringt mir nur eine Lösung... #3 +3554 Ach ja, sorry - ist schon ein bisschen her dass ich solche Gleichungen lösen musste:D Die Polardarstellung ist trotzdem der Schlüssel - das Entscheidende ist, dass der Winkel im Exponenten ja problemlos um 2Pi vergrößert werden kann. Statt mit \(\frac{3\pi}{2} \) im Exponenten am Anfang kann der Ansatz also auch genauso mit \(\frac{7\pi}{2}\) begonnen werden: \(z^3 = -64i \\ z^3 = 64 \cdot e^{i\frac{7\pi}{2}} \ \ | ^3\sqrt.