Ein Glücksrad Hat 3 Gleich Große Sektoren

3, 9k Aufrufe,, Ein Glücksrad hat drei gleich große 120°-Sektoren, von denen zwei Sektoren die Ziffer 1, ein Sektor die Ziffer 2 trägt. Nun drehen zwei Spieler A und B das Glücksrad je einmal. Sind die beiden gedrehten Ziffern gleich, so gewinnt Spieler A und erhält 2 € von Spieler B. Andernfalls gewinnt Spieler B und erhält die Ziffernsumme in € von Spieler A. Welcher Spieler ist im Vorteil. P(1I1)=1/9 P(1I1)=1/9 P(1I1)=1/9 P(1I1)=1/9 P(2I2)=1/9 P(Gewinn für Spieler A)=5/9 Gewinn=5/9 * 2€=10/9 Wie geht das weiter.?

  1. Ein glücksrad hat 3 gleich große sektoren cast
  2. Ein glücksrad hat 3 gleich große sektoren download

Ein Glücksrad Hat 3 Gleich Große Sektoren Cast

Frage anzeigen - Wahrscheinlichkeitsrechnung Hallo, ich lerne gerade für meine Mathe Arbeit und habe Übungen gemacht und würde gerne wissen, ob meine Rechnungen korrekt sind! Vielen Dank. 1. Bestimmen Sie die Wahrscheinlichkeit dass eine zufällig bestimmte natürliche Zahl zwischen 1 und 100 a) durch 5 teilbar ist b) durch 13 teilbar ist c) durch 5 oder 13 teilbar ist d) durch 5 und 13 teilbar ist 2) Ermittlen Sie die Wahrscheinlichkeit, bei einem doppelten Münzwurf a) genau einmal "Kopf" zu werfen b) genau zweimal "Zahl" zu werfen c) mindestens einmal "Zahl" zu werfen d) ein gemischtes Ergebnis zu erzielen e) im zweiten Wurf "Kopf" 3. Tina und Lara werfen jeweils mit einem idealen Würfel. Tina erhält einen Punkt, wenn sie eine Augenzahl wirft, die Teiler von Laras geworfener Augenzahl ist. Lara erhält einen Punkt, wenn sie eine a) kleinere b) größere Augenzahl als Tina wirft. Ermittleln Sie jeweils, wer von den beiden Mädchen die größere Chance hat. 4. Ein Glücksrad ist in gleich große Sektoren unterteilt, die blau, rot, gelb oder weiß sind.

Ein Glücksrad Hat 3 Gleich Große Sektoren Download

Die Wahrscheinlichkeit für Kopf und Zahl sei gleich ( p = 0, 5) Gegenereignis von mindestens einmal Kopf ist keinmal Zahl. Die Münze muss mindestens 7 mal geworfen werden, um mit einer Sicherheit von mindestens 99% mindestens einmal Kopf zu erhalten. 7. Wie oft muss man mindestens Würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% mindestens eine Sechs zu bekommen? 7. A: Mindestens eine 6 bei n Würfen. E = { 1; 2; 3; … n} p = 1/6 Das Gegenereignis von A lautet: Keine 6 bei n Würfen. Man muss mindestens 13 mal würfeln, um mit einer Wahrscheinlichkeit von mindestens 90% mindestens eine 6 zu werfen. 8. Ein Würfel wird 60 mal geworfen. Wie groß ist die Wahrscheinlichkeit für folgende Ereignisse: A:Man wirft genau 10 mal die 6. B:Man wirft mindestens 10 mal die 6. C:Man wirft höchstens 10 mal die 6. D:Die Anzahl der geworfenen Sechser liegt zwischen 6 und 12 einschließlich. E:Man wirft mehr als 4 und weniger als 15 Sechser. F:Die Augenzahl ist in weniger als 25 Fällen ungerade. G:Die Augenzahl ist in mehr als 30 Fällen gerade.

= 1 | Vereinbarung 1! = 1 2! = 2 * 1 3! = 3 * 2 * 1 4! = 4 * 3 * 2 * 1 5! = 5 * 4 * 3 * 2 * 1 usw. Im obigen Beispiel haben wir also (4 über 3) = 4! / [3! * (4 - 3)! ] = (4 * 3 * 2 * 1) / [( 3 * 2 * 1) * 1] Das rot Markierte kürzt sich weg, so dass nur 4/1 = 4 übrig bleibt. Klaro?