Weierstraßscher Konvergenzsatz – Wikipedia

Beispiele (1) Die Funktion f:] 0, 1 [ → ℝ mit f (x) = x hat das Bild] 0, 1 [. (2) Die Funktion g:] 0, 1 [ → ℝ mit g(x) = 1 hat das Bild { 1} = [ 1, 1]. (3) Die Funktion h:] 0, 1 [ → ℝ mit h(x) = |x − 1/2| hat das Bild [ 0, 1/2 [. Den kompakten Intervallen der Form [ a, b] kommt in der Analysis eine besondere Bedeutung zu. Beispiele sind: Prinzip der Intervallschachtelung Jede Intervallfolge [ a, b] ⊇ [ a 1, b 1] ⊇ … besitzt einen nichtleeren Schnitt. Satz von Bolzano-Weierstraß Jede Folge in [ a, b] besitzt einen Häufungspunkt in [ a, b]. Satz über die gleichmäßige Stetigkeit Jede stetige Funktion auf [ a, b] ist gleichmäßig stetig. Satz über den Wertebereich Jede stetige Funktion auf [ a, b] besitzt ein Intervall [ c, d] als Bild.

  1. Satz von weierstraß von

Satz Von Weierstraß Von

Der Satz von Bolzano-Weierstraß (nach Bernard Bolzano und Karl Weierstraß) ist ein Satz der Analysis über die Existenz konvergenter Teilfolgen. Formulierungen des Satzes von Bolzano-Weierstraß [ Bearbeiten | Quelltext bearbeiten] Für den Satz von Bolzano-Weierstraß gibt es folgende Formulierungen, die alle äquivalent zueinander sind: Jede beschränkte Folge komplexer Zahlen (mit unendlich vielen Gliedern) enthält (mindestens) eine konvergente Teilfolge. Jede beschränkte Folge komplexer Zahlen (mit unendlich vielen Gliedern) hat (mindestens) einen Häufungspunkt. Jede beschränkte Folge reeller Zahlen hat einen größten und einen kleinsten Häufungspunkt. Beweisskizze [ Bearbeiten | Quelltext bearbeiten] Der Beweis der allgemeinen Aussagen wird auf die eindimensionale reelle Aussage zurückgeführt. Diese kann man beweisen, indem man gleichzeitig eine Intervallschachtelung und eine Teilfolge konstruiert, so dass für jedes gilt. Diese zwei Folgen werden rekursiv konstruiert. Als Startpunkt dient das Intervall, wobei L eine Schranke der Folge ist, d. h. alle Folgeglieder sind im Intervall enthalten.

(Letzteres kann nicht passieren, aber das weiß man an dieser Stelle noch nicht). Nun wendet man den Satz von Bolzano-Weierstraß auf die Folge (x n) n ∈ ℕ im Definitionsbereich an. Dies liefert einen Häufungspunkt p der Folge, und man zeigt nun mit Hilfe der Stetigkeit von f im Punkt p, dass die Funktion f im Punkt p wie gewünscht ihr Maximum annimmt. Eine analoge Argumentation oder ein Übergang zu −f zeigt die Annahme des Minimums. Eine stetige Funktion auf einem Intervall [ a, b] kann ihr Maximum und ihr Minimum mehrfach annehmen, man betrachte etwa den Kosinus auf dem Intervall [ 0, 6 π]. Eine konstante Funktion nimmt sogar in jedem Punkt ihr Minimum und ihr Maximum an. Umgekehrt gilt: Ist das Minumum einer Funktion gleich ihrem Maximum, so ist die Funktion konstant. Der Extremwertsatz ist für stetige Funktionen, die auf offenen oder halboffenen Intervallen definiert sind, im Allgemeinen nicht mehr gültig: Beispiele (1) Die Funktion f:] 0, 1] → ℝ mit f (x) = 1/x nimmt ihr Minimum 1 im Punkt 1 an, aber ihr Wertebereich [ 1, +∞ [ ist nach oben unbeschränkt und hat kein Maximum.